A Collection of Brief, Reliable and Valid Instruments to Obtain a Holistic Picture of Children with Cerebral Palsy: Products of the Move & PLAY Study

Move & PLAY Study Team
Lehmann Day May 2013
Movement and Participation in Life Activities of Young Children with Cerebral Palsy

Funded by

Canadian Institutes of Health Research

National Institute of Disability and Rehabilitation Research
Investigators and Collaborators

- Doreen Bartlett, PT, PhD, Western University, CanChild
- Lisa Chiarello, PT, PhD, PCS, Drexel University
- Robert Palisano, PT, DSc, Drexel University, CanChild
- Peter Rosenbaum, MD, FRCP(C), McMaster University, CanChild
- Sarah Westcott McCoy, PT, PhD, University of Washington
- Lynn Jeffries, PT, PhD, PCS, University of Oklahoma Health Sciences Center
- Alyssa LaForme Fiss, PT, PhD, PCS, Mercer University

- Barbara Stoskopf, RN, MHSc, McMaster, CanChild, Project Coordinator
- Audrey Wood, PT, MS, Drexel University, Regional Coordinator
- Allison Yocum, PT, DSc, PCS, University of Washington, Regional Coordinator
- Tina Hjorngaard, Canadian Parent Consultant
- Barbara Sieck Taylor, American Parent Consultant
- Piotr Wilk, Statistician, Western University
- Therapist Assessors; Interviewers; and participating Parents and Children
Population of Interest: Cerebral Palsy

Cerebral palsy (CP) describes a group of disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain.

The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, and behaviour, by epilepsy, and by secondary musculoskeletal problems.

(Rosenbaum et al. 2007, page 9)
Children with cerebral palsy have complex and unique challenges that impact motor function and participation in daily life.

Clinicians should be using several (brief) assessment tools for different aspects of the condition to provide a holistic view of each individual client.
Conceptual Model (Bartlett et al. 2010; Chiarello et al. 2011)
Health Condition

Cerebral Palsy & Associated Conditions *

Body Structure/Function
- Balance *, Spasticity, Distribution, Quality, Strength *, ROM *, Endurance *

Activities
- GM Function *

Participation
- Self-Care in Daily Life *
- Family/Community/Leisure *

Environmental Factors
- Family Function
- Family Expectations
- Services
- Community Physical Recreation

Personal Factors
- Adaptive Behavior
- Playfulness
- Enjoyment of Participation *

Adapted from the ICF; WHO, 2001
Objectives: to understand how to administer, score and interpret measures we have developed:

✧ an abbreviated version of the Gross Motor Function Measure using a basal and ceiling approach (GMFM-66-B&C)
✧ Early Clinical Assessment of Balance
✧ Functional Strength Assessment
✧ Spinal Alignment and Range of Motion Measure

Parent report measures:
✧ Child Engagement in Daily Life Measure
✧ Early Activity Scale for Endurance
✧ Health Conditions Questionnaire
Gross Motor Function Measure (GMFM)
The Gross Motor Function Measure (GMFM)
(Russell et al. 2002)

- Standardized observational instrument to measure change over time in children with CP
- Reflect the ability level of typical 5-year-old children
- Activities from 5 dimensions:
 - lying and rolling, crawling and kneeling, sitting, standing and walking, running, jumping
- Originally 88 items; reduced to 66
- Computerized scoring program (GMAE)
Item Scaling:

✧ 0 child does not initiate
✧ 1 initiates (less than 10%)
✧ 2 partially completes (10 - < 100%)
✧ 3 completes (100% task completion)
✧ NT not tested

Refer to detailed item descriptions in manual
GMFM-66-Basal & Ceiling (GMFM-66-B&C)
(Brunton & Bartlett, 2011)

- Developed a modified score sheet with the items in difficulty order: easiest to hardest
 - Entry points suggested for GMFCS and age
 - Each item: CAPS – start position, after colon – maximum function for score of 3
 - Columns on left indicate dimension
- Basal = 3 consecutive 3s
- Ceiling = 3 consecutive 0s
- Minimum of 15 items need to be scored
Validation of the GMFM-66-B&C

(Brunton & Bartlett, 2011)

✧ Concurrent Validity with the GMFM-66
 ✧ ICC = 0.987 (95% CI = 0.972-0.994)

✧ Inter-rater Reliability
 ✧ ICC = 0.970 (95% CI = 0.932 – 0.986)

✧ Test-retest Reliability (over 2 week period)
 ✧ GMFM-66-B&C = 0.994 (95% CI = 0.987-0.997)

✧ Average Time to Completion (in minutes)
 ✧ Time 1 = 26.0 (SD = 9.3)
 ✧ Time 2 = 21.1 (SD = 7.8)
Equipment: Assemble Prior to Testing

(Russell et al. 2002)

✧ Stop watch
✧ Mat
✧ Measuring tape
✧ Flagging tape / masking tape (arrange two parallel lines 8” apart and 20’ long)
✧ Circle
✧ Ruler
✧ Large Ball
✧ 24” long stick
✧ Small toy
✧ Bench for sitting feet on floor
Guidelines for Administration

- Sufficient space, warmth, comfort
- Shorts and t-shirt ideal; bare feet
- Maximum of 3 trials each item (score BEST)
- Spontaneous performance OK
- Can place child in start position, but no other facilitation
- Use toys / incentives / creativity
GMFM-66-B&C

Scoring using the GMAE2

Download available from:

http://canchild.ca

Search GMAE-2
Case study: Katie
Gross Motor Function

• Katie, age 3 ½ years, spastic diplegia, level III

• Enter data into the GMAE
 • GMFM-66 = 45.1 (95% CI = 43.1 to 47.2)
 • pattern of scoring on item map can assist with
 • realistic goal setting for motor function
 • timing of successful goal attainment
Interpreting the GMFM-66-B&C

(Hanna et al. 2008)
Variability by GMFCS Level

Tables on CanChild Website (Hanna et al. 2008)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>147</td>
<td>78</td>
<td>107</td>
<td>121</td>
<td>117</td>
</tr>
<tr>
<td>mean change</td>
<td>3.0</td>
<td>-0.8</td>
<td>3.3</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>sd change</td>
<td>15.6</td>
<td>15.5</td>
<td>12.4</td>
<td>11.8</td>
<td>13.2</td>
</tr>
<tr>
<td>probability interval of change in percentiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>±10.5</td>
<td>±10.5</td>
<td>±8.4</td>
<td>±8.0</td>
<td>±8.9</td>
</tr>
<tr>
<td>80%</td>
<td>±20.0</td>
<td>±19.9</td>
<td>±15.9</td>
<td>±15.1</td>
<td>±16.9</td>
</tr>
</tbody>
</table>
Katie – as expected

<table>
<thead>
<tr>
<th></th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFM-66</td>
<td>45.1</td>
<td>48.1</td>
</tr>
<tr>
<td>Percentile</td>
<td>25th</td>
<td>35th</td>
</tr>
</tbody>
</table>

- Change in GMFM score of 3 points
- GMFM-66 scores translate to percentile ranks of 25th and 35th, a difference of 10
- This amount of change means that Katie is developing as *might be expected* (within ± 16)
<table>
<thead>
<tr>
<th></th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFM-66</td>
<td>45.1</td>
<td>54.2</td>
</tr>
<tr>
<td>Percentile</td>
<td>25th</td>
<td>75th</td>
</tr>
</tbody>
</table>

- Change in GMFM score of 9 points
- GMFM-66 scores translate to percentile ranks of 25th and 75th, a difference of 50
- This amount of change means that Katie is developing *better than expected* (outside ± 16)
Katie – *more poorly than expected*

<table>
<thead>
<tr>
<th></th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFM-66</td>
<td>45.1</td>
<td>40.4</td>
</tr>
<tr>
<td>Percentile</td>
<td>25th</td>
<td>5th</td>
</tr>
</tbody>
</table>

- Decline in GMFM score of almost 5 points
- GMFM-66 scores translate to percentile ranks of 25th and the 5th, a difference of 20
- This amount of change means that Katie is developing *more poorly than expected* (outside ± 16)
Summary: Utility of the GMFM-66-B&C
(Brunton & Bartlett, 2011)

- Fewer items to be administered/scored
- Decreased time to administer, leaving time to assess other aspects of the child and family
- Provides an accurate estimate of the motor abilities of the child – GMFM-66 Score; details are available: http://www.canchild.ca/en/ourresearch/moveplay.asp
- Use of the GMAE software allows for interpretation of scores over time and the use of item maps
Early Clinical Assessment of Balance (ECAB)
Early Clinical Assessment of Balance (ECAB)

(McCoy et al. Under Review)

- A new measure of balance that was developed in the Move & PLAY Study; available at: http://www.canchild.ca/en/ourresearch/moveplay.asp
- Accommodates children across all GMFCS levels
- An integration of two existing measures:
 - Movement Assessment of Infants (MAI)
 - Pediatric Balance Scale (PBS)
Items from the Movement Assessment of Infants (MAI) (Chandler, Andrew & Swanson, 1980)

✧ PART I : 7 items (some bilateral) from the Automatic Reactions section of the MAI:
 ✧ Lateral head righting (R/L)
 ✧ Head righting in flexion and extension
 ✧ Rotation in the trunk (R/L)
 ✧ Equilibrium reactions in sitting (R/L)
 ✧ Protective extension to the side and backwards (R/L)
Items from the Pediatric Balance Scale (PBS)
(Franjoine, Gunther, and Taylor, 2003)

✧ PART II : 6 items from the PBS
✧ Sitting with back unsupported but feet supported
✧ Moving from sitting to standing
✧ Standing unsupported with eyes closed
✧ Standing unsupported with feet together
✧ Turning 360 degrees
✧ Placing alternative feet on a step while standing unsupported
Item Selection for the ECAB

- Item 6 was removed from the MAI
 - Protective extension forward was excluded because it is hard to test in older children

- 6 items were selected from the PBS to represent:
 - 2 relatively easy items
 - 2 moderately difficult items
 - 2 relatively difficult items
Reliability and Validity of the ECAB
(Randall et al. Under Review)

- **Inter-Rater Reliability:** 0.989 (95% CI: 0.976 – 0.995)
- **Test-Retest Reliability:** 0.986 (95% CI: 0.971 – 0.994)
- **Construct Validity with GMFM-66-B&C:** 0.96 (p<0.001)

- **Time to complete:** 11.6 minutes (sd: 4.2)
Equipment Required

✧ Adjustable height bench
✧ Mat
✧ Stopwatch
✧ A step stool 6-inches in height
✧ ECAB score sheet

Optional Equipment

✧ 2 child-size footprints
✧ Blindfold
✧ Flash cards
✧ Stickers
Administration

- Children in GMFCS levels I & II:
 - Begin testing the child at Part II (item 8)

- Children in GMFCS levels III, IV, V
 - Begin testing the child with Part I (item 1)
 - Children in level III attempt both Parts I and II

- Children with hemiplegia
 - Begin testing the child at item 4

In all cases: Continue testing until child can no longer do items
Scoring the ECAB

PART I
- Responses are graded on a 0–3 point ordinal scale
- Maximum score Part I = 36

PART II
- Responses are graded on a 0–4 point ordinal scale
- Scores are then re-weighted to account for the task’s increased difficulty (details provided on the score-sheet)
- Maximum score Part II = 64

MAXIMUM TOTAL SCORE = 100
Obtaining ECAB Scores for Children at Different GMFCS Levels

- Children in GMFCS levels III, IV, V
 - For total score, sum all available items

- Children in GMFCS levels I & II:
 - For total score, sum 36 plus Part II score

- Children with hemiplegia
 - For total score, credit child with 12 for items 1-3, then sum rest of Parts I and II
Case study: Katie Balance (McCoy et al. in re-submission process)

Early Clinical Assessment of Balance (ECAB) score = 41.5/100 is > the 75th percentile for GMFCS level III
Functional Strength Assessment (FSA)
Functional Strength Assessment
(Jeffries et al, in preparation; measure pending posting)

Force production in selected muscle groups:
- neck and trunk extensors
- neck and trunk flexors
- hip extensors
- knee extensors
- shoulder flexors
Description of Measure

- Traditional MMT is time consuming, difficult to get full cooperation of young children & no summary score

- The system used in this study emphasizes obtaining an estimate of major muscle groups only, and strategy to obtain a summary score

- Each muscle group can be rated on an ordinal scale 1-5 allowing for limitations in range of motion
Scaling

- 5 Full available range against gravity and strong, age appropriate resistance
- 4 Full available range against gravity and some resistance
- 3 Full available range against gravity, but no resistance
- 2 Unable to move completely against gravity
- 1 Only flicker of contraction or just initiates movement against gravity

Scoring

- Total or average score
Reliability and Validity of the FSA
(Jeffries et al, in preparation)

✧ Test-Retest Reliability: 0.97 (95% CI: 0.95 – 0.99)

✧ Internal consistency: Cronbach’s Alpha = 0.93

✧ Discriminant Validity: differentiates across all GMFCS levels except for II and III
Equipment

- No special equipment
- Ideally the child will be dressed in shorts & t-shirt
- Useful to have:
 - A sturdy chair (or adjustable stool)
 - A mat
 - Stickers, Bubbles, Toys, etc to elicit movements
Guidelines for Administration

- Child should be alert and happy
- Use your knowledge, skills, and creativity!
- It may be useful to count to 5 to encourage the child to maintain the position during testing
- Use stickers, bubbles, toys, etc. to elicit anti-gravity movement
Case Study: Katie Strength

Katie’s average score for Strength = 3.25 < 25th percentile for GMFCS level III
Spinal Alignment and Range of Motion Measure (SAROMM)
SAROMM (Bartlett and Purdie, 2005)

- Aim is to obtain a full-body summary score of the extent of limitations in spinal alignment & range of motion / extensibility
- 4 items in spinal alignment subscale
- 22 items in the range of motion subscale, all but 2 in the lower extremity
- Uses standard PT techniques, but uses ordinal scale, rather than goniometer, to estimate limitations
Scaling

- 0 normal alignment and range with active correction
 (NO POSTURING of the limbs putting individual ‘at risk’ for contracture)
- 1 normal alignment and range with passive correction
- 2 “mild” fixed deformity
- 3 “moderate” fixed deformity
- 4 “severe” fixed deformity

Decisions about 2, 3, 4 based on photos for items 1-4 and 25-26 and on specified “cut-points” for the remaining

Details in the manual and score-sheet posted on the CanChild site

Total or average score used for analysis
Scaling: Differentiating 0 and 1

Situation: Child with hemiplegia postures lower extremity in hip flexion, adduction, internal rotation, knee flexion and ankle plantar flexion; full passive range

Scores for:
- Hip flexion
- Hip extension
- Hip adduction
- Hip abduction
- Hip internal rotation
- Hip external rotation
- Knee extension
- Ankle plantar flexion
- Ankle dorsiflexion
Scaling: Differentiating 0 and 1

Situation: Child with hemiplegia postures lower extremity in hip flexion, adduction, internal rotation, knee flexion and ankle plantar flexion; full passive range

Scores for:
- Hip flexion: 0
- Hip extension: 1
- Hip adduction: 0
- Hip abduction: 1
- Hip internal rotation: 0
- Hip external rotation: 1
- Knee extension: 1
- Ankle plantar flexion: 0
- Ankle dorsiflexion: 1
Reliability and Validity of the SAROMM
(Bartlett and Purdie, 2005)

✧ Reliabilities (inter-rater and test-retest): ICCs > 0.80
✧ Internal consistency: Cronbach’s Alpha = 0.95
✧ Discriminant Validity: differentiates across all GMFCS levels
Equipment

- Adjustable stool (hips and knees 90 degrees) for spinal alignment subscale
- Floor mat for other items
Guidelines for Administration

- Have child dressed appropriately so can palpate / visualize to score properly
- Use standard PT techniques to administer items
- Ensure child is relaxed for passive testing; move the limbs slowly and firmly to minimize the effects of spasticity
- If need to test passively, expect a “firm” end feel
- Do not conduct passive testing if painful for the child; note “not tested”
Case Study: Katie
Range of Motion (SAROMM: Bartlett & Purdie, 2005)

Katie has an average SAROMM score of 0.85
~ median value for GMFCS level III
Child Engagement in Daily Life Measure

parent-completed measure
Child Engagement in Daily Life
(Chiarello et al. In Preparation; measure pending posting)

Items / Subscales

• 40-items (5-point Likert Scales)

• parents rate the child’s:
 • 1) frequency and degree of enjoyment in participating in family and community life & recreation and leisure activities
 • 2) need for physical help and ability to consistently do ADLs (self-care)
Scaling and Scoring

Scaling – from 1 to 5

✧ Participation: never, almost never, once in a while, often, very often

✧ Enjoyment: not at all, very little, somewhat, very much, a great deal

✧ Self-Care: does not do the activity; does assist but needs help for all; does part independently, but needs help for some; independently some of the time; independently most of the time

Scoring

✧ Average frequency of participation; enjoyment of participation; and self-care abilities
Reliability and Validity

✧ Cronbach’s alpha:
 - Participation = 0.86
 - Self-care = 0.90

✧ Test-retest reliability
 - Participation = 0.70 (95% CI 0.47 – 0.84)
 - Self-care = 0.96 (95% CI 0.91 – 0.98)

✧ Rasch analysis supported participation; refinements to self-care (preliminary results good)
Case Study: Katie

Amount of Participation: Recreation/Leisure

- Katie’s average amount of participation score was 3, "once in awhile"
- 3 is well below 25th percentile for child at GMFCS III
Case study: Katie

Ability to do Self-Care Activities

Katie had an average self-care score of 3.3

A 3 is at the median value for a child at GMFCS level III

(Score of 3: child completes part of the activity without help but requires help of adult to complete the activity)
Summary for Katie

- Which outcomes to work on?
 - Gross Motor
 - Participation in recreation and leisure
 - Participation in self-care

- What impairments to focus on?
 - Balance, Strength, ROM,
Limitations

✧ Interpretation of all measures except the GMFM is currently limited to cross-sectional reference data for children 18 months up to the 5th birthday

✧ Measures of the primary impairments of spasticity, distribution of involvement, and quality of movement have not been presented; we don’t perceive these to be amenable to change through therapy

✧ Did not present endurance and health measures

✧ Brief measures of adaptive behaviour, attributes of families and services not yet available publicly

✧ Test of Playfulness requires extensive training and criterion testing prior to being used clinically
Limitations – Interpretations RELATIVE

- Recall that children are spread across the full continuum of scores (e.g. GMFM; Rosenbaum et al. 2002)

Some children will be below the 25th percentile in each level

- probably better to interpret percentiles based on relative strengths and weaknesses, rather than absolute number
Summary

- Measurement model for children with CP
- Holistic
- Low burden of testing
- Able to compare to other children with CP
- In future able to compare change across time
- Propose that we “harmonize” use of tests/measures
To realize the clinical utility of this battery of instruments, access the following complementary presentation:

Move & Play

Supporting Motor Function, Self-care, Participation and Playfulness of Young Children with Cerebral Palsy
Questions asked

What combination of child, family and service factors explain the change in motor abilities of young children with CP?

What combination of child, family and service factors explain participation in self-care, recreation and leisure activities and play of young children with CP?
For More Information

To establish developmental trajectories and longitudinal growth curves for balance, range of motion, strength, endurance impairments, and number and impact of associated health conditions, that are significant determinants of basic motor abilities, self-care, and participation in life activities for children with CP, age of 18 months through 12 years in each of the five levels of the GMFCS.

Funded by:
CIHR, Bartlett D (PI)
PCORI, McCoy SW (PI)

(Rosenbaum et al., 2002)
Key References

Key References (continued)

